
A-A103 796 MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPUTER SCIENCE IG
PARALLEL SCHEDULING ALGORITHMS.N(U
MAR 81 E DEKEL, S SHNI N00014880-C0650

UNCLASSIFIED TR-81-1LIIII.IIIII
Ehmhhhhh
IEEElllll





Accession For

NTIS GRA&I
DTIC TAB
Unannounced ]
Justificatio

Distribution/

Availability Codes Computer Science Department

, Avail and/or 136 Lind Hall

Dist Spe iB].Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

(/' )?- ..."..

II
/ - 4.. -- ,/_

LPallel Scheduling Algorithms,,l

Eliezer ekel-jM Sartaj/Shn

Technical Report 81-1

'iartaj/Sa981

DTIC

Cover design courtesy of Ruth and Jay Leavitt D

DISTRIBUTION STATEMENT A
Approved for public release; 81 7 20 0 39

Distribution Unlimited



Parallel Scheduling Algoritnms*
Eliezer Dekel and Sartaj Sanni

University of Minnesota

Abstract:
/

.dJe obtain fast parallel algorithms for several scheduling
problems. Some of the problems considered are: scheduling
to minimize tne number of tardy jobs; job sequencing with
deadlines; scheduling to minimize earliness and tardiness
penalties; channel assignment; and minimizing the mean fin-
isn time. The shared memory model of parallel computers is
used.

Key-dords and Phrases: parallel algorithm, complaxicy,
shared remory model, mean finish time, earliness, tardiness,
deadline.

Tnis researcn was supported in part by the Office of
gaval Reseacn under contract .QJ014-80-C-0650.



1. Introduction

Witn the continuing dramatic decline in the cost of
hardware, it is becoming feasible to economically build com-
puters with thousands of processors. In fact, Batcher [3]
describes a computer (MPP) with 16,384 processors that is
currently being built for NASA. In coming years, one can
expect to see computers with a hundred thousand or even a
million processing elements. This expectation has motivated
tne study of parallel algorithms.

Since the complexity of a parallel algorithm depends
very mucn on the architecture of the parallel computer on
whicn it is run, it is necessary to keep the architecture in
mind when designing the algorithm. Several parallel arcni-
tectures have been proposed and studied. In this paper, we
shall deal directly only with the single instruction stream,
multiple data stream (SIMD) model. Our techniques and algo-
rithms readily adapt to the other models (eg: multiple
instruction stream multiple data stream (MIMD) and data flow

models). SIMD computers have the following characteristics:

* (1) They consist of p processing elements (PEs). The PEs
are indexed 0,1, ..., p-l and an individual PE may be
referenced as in PE(i). Each PE is capable of perform-
ing the standard arithmetic and logical operations. In
addition, each PE knows its index.

(2) Each PE has some local memory.

(3) The PEs are synchronized and operate under the control
of a single instruction stream.

(4) An enable/disable mask can be used to select a subset
of the PEs that are to perform an instruction. Only the
enabled PEs will perform the instruction. The remain-
ing PEs will be idle. All enabled PEs execute the same
instruction. rhe set of enabled PEs can cnange from
instruction to instruction.

While several SIMD models have been proposed, in this
paper we snall deal explicitly with only the shared memory
model (SMM). In this model, there is a large common memory
tnat is shared by all the PEs. It is assumed that any P'
can access any word of this common memory in O(1) time.
dhen two or more PEs access the same word simultaneously, we
snall say that a conflict has occured. If all tne PEs (at
least two) that simultaneously access the same word wisn to
write in it, it is called a write conflict. If all wish to
read, then it is a read confl ct. Write conflicts may be
permitted so long as all the PEs wish to write tne same
piece of information. As far as our discussion here is con-
cerned, no read or write conflicts are allowed. A



-, -- I! --

3-

description of some of the otner SIMD models can be found in
C5].

Most algorithmic studies of parallel computation have
oeen based on the SMM (1,2,4,7,10,11,19,21,22). Parallel
imatrix and graph algorithms for the SMM nave been developed
by Agerwala and Lint El], Arjomandi £2J, Csanky [4], EcK-
stein [7], Hirschberg, Chandra, and Sarwate Clv], and Savage
C22]. Hirscnberg Ell], Muller and Preparata £19], and
Preparata [21] have considered the sorting problem for SMMs.
Tne results of Muller and Preparata [19] and Preparata C21]
will be made use of in this paper. In these two papers, i
is shown that n numbers can be jorted in O(logn) time if n
PEs are available, and in O(log n) time when n PEs are
available.

DeKel and Sahni [6] develop a design technique for
parallel algorithms that is based on binary computation
trees. This design technique is illustrated using several
examples from scheduling tneory. Some of tne scheduling
problems considered by them are:

Pl: Schedule many machines to minimize maximum lateness
when all jobs nave a processing time Pi=l.

P2: Scnedule one macnine to minimize maximum lateness.
Preemptions are permitted.

P3: Schedule one machine to minimize the number of tardy
jobs.

P4: The job sequencing with deadlines problem.

The complexity of heir parallel algorithms for all the
above problems is O(log n).

When measuring the effectiveness of a parallel ale, -
rithm, one needs to consider both its complexity as well as
its cost in terms of the number of PEs used. The effective-
ness of processor utilization (EPU) is defined with respect
to a parallel algorithm and the fastest knoan sequential
(i.e., single processor) algorithm for the same problem.
Let P be a problem and A a parallel algorithm for P. We
define:

EPU(P,A)=
complexity of the fastest sequential algorithm for P

number of PEs used by A * complexity of A

rne algorithm of £6] for problem P1 aoove uses n/2 PEs
and nas a complexity of O(log n). The fastest sequential
Algoritnm known for this problem is due to Horn £4] and runs
in J(n logn) time. So, the 2EPU of the parallel algoritnm of
£6] for P1 is 0(nlogn/(nlog n)) = 0(1/logn).

.. . . . ". . . . . . .. . . ,,. . . . . . . . . . I l I . . . . . . . . . . .. . .Ad



-4

The best EPU one can hope for is 0(1). Few parallel
algorithms achieve this EPU. Dekel and Sahni [6] present
some algorithms that do. One that we snall need here is for
the partial sums proolem. We are given n numbers

n
al,a2...,a and are required to compute Aj= iDa i, l<j<n,

21 i=l-
where s is any asscoiative operator (eg. max, min, +, ).
Their algorithm run in O(logn) time and uses n/logn PEs.

In this paper, we consider several scheduling problems.
Fast parallel algorithms are obtained for each. In each
case, the complexity analysis is carried out on the assump-
tion tnat as many PEs as needed are available. This is in
conformance with the assumption made in almost all the
research work done on parallel computing. This assumption
is of course unrealistic. A parallel algorithm -will eventu-
ally be run on a machine with a finite number (say k) of
PEs. It should be easy to see that all our algorithms are
easily adapted to the case of k PEs. If our algorithm has
complexity O(g(n)) using f(n) PEs, then with K PEs, k <
f(n), its complexity is O(g(n)f(n)/k). We shall continue
with tradition, and explicitly analyse our algorithms only
for the case when as many PEs as needed are available.

In Sections 2 and 3, we consider two relatively simple
examples. The first of these is to minimize the finish time
when m identical machines are available. The second example
is to minimize the mean finish time when m uniform machines
are available. In Sections 4, 5, 6, and 7, we respectively,
consider the following problems:

(i) minimize the number of tardy jobs when pi=l
l<i<n and 1 machine is available.

(ii) job-sequencing with deadlines.
(iii) schedule one mahcine to minimize the maximum

earliness and tardiness penalties.
and

(iv) channel assignment.

2. Minimum Finish Time

When preemptions are permitted, a minimum finish time

schedule for m machines is efficiently obtained using Ac
Naughton's rule [17]. Let p ,p -...,p De the processing
times of the n jobs. Thl inish ie, f, of an optimal
preemptive schedule is given by:

f - max( max [pini Pi }1<i<n lI

Using f, tne optimal schedule may oe constructed in

3(n) time [17]. Job 1 is scheduled on machine I from J to
pa and job 2 from p, to mia( p1+P2 ,f}. If P1 + P2 > f' then



tne remainder of job 2 is done on macnine 2 starting at time
J. If p. 1 + 2 <f, tnen job 3 is scheduled on macnine I from

to min(P 1 + P2 + P3 1 f), etc.

n
Using tne parallel algorithms of [63, max[pi} and k Pi

may be computed in 3(logn) time witn /logn PEs. To otain

tne actual schedule, we also need A.= z p., l<i<n. As men-

tioned in Section 1, all the A s can oe computed in O(logn)
time using n/logn PEs (C63). Let A =0. Each job i can now
determine its own processing assignment by using the follow-
ing rule:

X 4- FAii/f7 * f - Ai_ 1
case-x= : schedule job i on machine FA./f1 from 3 to Pi

:xo: schedule job i on machine lAs/f7 from
f-x to f-x+p.

:else: schedule jobli on machine FAi/fl from 0 to

pi-x ii

end case

ine may verify that x gives the amount of processing
time left on tne machine EA i-/ff after job i-I is fin-
isned on that machine.

Example 2.1: Suppose we nave 14 jobs with processing times
as given in Figure 2.1. Let m=5. f=max(7, 50/5}=iZ. Fig-
ure 2.1 gives the A. and x values for each job. The
scnedule octained is given in Figure 2.2.]

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14I ,

1i 5 3 1 2 7 4 1 5 4 6 1 6 3

A' 5 8 9 11 18 22 23 28 30 34 40 41 47 50i
ii I

x 2 1 9 -. S 7 2 0 6 0.9 3!

Figure 2.1

if we have n PEs, all the machine assignmencs can be
comouted in 3(I) time. However, using only n/logn PEs,
tnese assignments may be obtained in O(logn) time (i.e.,
eacn PE comoutes at most Elognl assignments) . So, the
overall scneduling algorithm has a complexity of 0(logn) and-i ses n,l!ogn PEs. So, its EPJ is 0(n, (logn*n, logn))=3(1).



-6-

12 ~ 3 4%

I 6L

6 7 78

10 110

5 , 13 14

time 01234 56 7 8 910

Figure 2.2

3. Minimum Mean Finish Time

A non-preemptive schedule that minimizes the mean finish
time of n jobs on m identical machines is obtained by using
the LPT rule. By simply using a parallel sorting alloritnm,
tnis schedule may be obtained in O(logn) time witn n PE's or
in O(log n) time with n PE.

Let us consider the case of mn uniform parallel
machines. Associated with machine i is a speed s. It
take s machine i, p .1/. time units to complete tne procissing
of job i. Horowitz and Sahni C13] present an 3(nlogmn)
algorithm that constructs a minimum mean finish time
schedule for this case. Their algorithm is reproduced in
Figure 3.1. This algorithm assumes thait the speeds and pro-
cessing times have been normalized and sorted such tnat
s . l1s 2 1... Is Mand lP2"!n

By examining this algoritn , we sea that another way to
obtain an optimal schedule is to sort the n numbers i/s.,

l ei<n, lj.m into nondecreasing order. Let tne rpsultiAg
sequence be a1 , a2 , a3, .. a . If a. corresponds to
mas., then job Ai duAsed o machine i and there are
q-1jobs following it on that macnine.

This information may be obtained in 0(iog inmn) tii
uoing a parallel sort and an PEs or in O(log an) time with -n
a PEa. If we use the former sort algor tnm, the EPU of our
parallel algorithm is a(nlogmn/(mn*log mnn))fO(l/(mloginn)).
If the latter sort algorithm is used, the iPU of our
scheduling algoritin becomes (nlogmn/(2 n plgan))
0(1/(m n)). The actual start and finian times for each job
can be obtained by later using th partial sums algorithm of

obana pC6lshdlJs osr.h n ubr /



- 7 - ~ 4,

-7-

Algoricnm MFT
Input: m processors with speeds , s , .. '.,s

l<s <...<s n jobs initially sorted so tat
2- I-' wnere the times pi are for pro-

cessor 1.
Output:Sets R. i<i<m. The jobs in R. are to be run

on processor i in increasing 1 order of cneir
execution times.

for j <- 1 to m -1 do

end for
R-i 2/s
/?Note that 1he aboveassigns the joo with tne
largest processing time to the fastest processor,

for k 4-- n - 1 to 1 do
Let u be the largeist Undex sucn that iu= min (i.1

i 4-i + 1/S <j<
end fo'

end MFT

Figure 3.1

4. L4umber of Tardy Jobs

Let J=f(pidi)1l<i<nl define a set of n jobs P. is the pro-
cessing cime of job i and d. is its due time. Let S be any
one machine schedule for J. 1Job i is tardy in the schedule
S iff it completes after its due time d.

Hodgson and Moore -18] have developed an O(nlogn)
sequential algoritnm that obtains a schedule tnat minimizes
tne nmber of tardy jobs. Deiel and Sahni r6j present an
O(log n) parallel algorithm to obtain a scnedule with the
fewest aumber of tardy jobs. This algorithm uses O(n) P~s
and has an EPU of 0(l/logn).

In this section, we shall develop a parallel algoritnm
for the case when p =, l<i<n. This igorithm will have a
complexity O(logn). IY will-require O(n ) PEs and thus nave
an EPU that is 0(1/n). 4hile the algorich-i of this section
has an EPU that is inferior to that of C6], it is faster by
A logn factor. It is interesting to note that the simplifi-
cation pi=1, l<i<n does not lead to a corresponding speed up
for tne sequential case.

The problem of finding a schedule tnat minimizes tne
number of tardy jobs is equivalent to that of selecting a
-maximum cardinality subset U of J such that every job in U
can oe completed by its due time. Jobs not in U can be
scheduled after those in U and will oe tardy. A set of jobs
U such that every job in U can be scheduled to complete by
its due time is called a feasible set. It is well known
that a set of jobs U is feasible iff scneduling jobs in U in



nondecreasing order of due times results in no tardy jobs
(see [14] for eg.).

When p.=l, l<i<n, a maximum cardinality feasible set U
can be obtained by considering the jobs in nondecreasing
order of due times. The job j currently being considered
can be added to U iff IUI<d.. Procedure FEAS(J,b) is a
slignt generalization. It findsia maximum subset of J that
can be scheduled in the interval FO,b]. DOE(i) is set to -1
if job i is not selected and is set to a number greater than
: otherwise. If DONE(i) > 0, then job i is to be scheduled
from DOEZ(i) - I to DONE(i). The procedure itself returns a
value that equals the number of jobs selected. The correct-
ness of FEAS is easily established using an exchange argu-
ment. Its complexity is O(nlogn) as it takes this much time
to order the jobs by due time.

line Procedure FEAS(Jn,b)
//select a maximum number of jobs for processing//
//in C ,b] n=iJ//

1 set J; integer n,b; global DONE(l:n)
2 sort J into nondecreasing order of due times
3 DONE(I:n) 4-- -1 //initialize//
4 j 4-. 0
5 for i -- 1 to n do
6 case
7 :j b: return(j) //interval full//
8 :j di: /select i// j e-j+l; DONE(i) 4--j
9 end case

10 end for
11 return~j)
12 end FEAS

Figure 4.1

Let J be a set of n unit processing time jobs. Lat
D(j), li<k be the distinct due times of the jobs in J.
Assume that D(i) D(i+l), l<i<k. Let n(i) be the number of
jobs in J with due time D(1), l<i<k. Clearly, 1 n(i)=n.
Let D(O)=J and n(J)=O. Define F(i)--o be the value of j

when procedure FEAS (Figure 4.1) has just finished consider-
ing all joDs in J witn due time at most D. . It is evident
that: 1

F(3) = D() =0(4.1)
F(i) = min(F(i-1)+n(i),D(i),bJ, I<i<K

Expanding the recurrence (4.1), we oDtain:

F(l) = min{D(Z)+N(l), D(l), b}
F(2) = min(F(1)+n(2), D(2), b)

= miin(D(O)+n(l)+n(2),D(1)+n(2),b+n(2),D(2),bj



-9-

= min(D(.3)+n(l)+n(2),D(L)+n(2),D(2),b}
F(3) =
,nin{D(3)+n(l)+n(2)+n(3),D(1)+n(2) n(3),D(2)+n(3),D(3),o}

And, in general
K m

(4.2) F(m) =mint min (D(i)+ Z n(q)},b} 3<m<k
1<i<m q=i+

ne maximum number of joos in J tnat can be scneduled
in CO,b], b>3, so tnat none is tardy is F(k). F(k) may be
efficiently computed, in parallel as follows. Let tne due
times of the n jobs in J be d(l), d(2),...,d(n). Let
d(J)=. 4e may assume that d(i)>J, l<i<n. rhe computation
steps are:

Step 1: sort d(l:n) into nondecreasing order.
Step 2: determine the points r(O), ..., r(k-l) in d(O:n)

where the due times change I.e. r(i) <
r(i+l),l<i<k and J(r(i)) # d(r(i)+l). Let
r(k)=n. Clearly, r(O)=O, and n(i)=r(i)-r(i-i)
and D(i) = d(rki)), l<i<(; D(J)=a.

St~~3: since D(i) + n(q) = D(i)+n-r(i),we
i+lcompute F(k)=mintn+ min [D(i)-r(i)},b} [1

0<i<k

Example 4.1 Figure 4.2(a) gives the due times of a set J of
15 jobs. in Figure 4.2(o), the jobs have been ordered by
due times. The points at whicn the due times change are
shown by heavy lines. We see that k=6; r(0:6) = (0, 3, 7,
8, 9, 13, 15) and D(0:6) = (0, 2, 3, 5, 8, 9, 11). So,
n+ min {D(i)-r(i)f 15 + min[4, -1, -4, -3, -1, -4, -41 =

J<i<K

13-4=11. If b > 11, then the maximum number of nontardy
joos is 11. [] -

iWith n2 PEs, step 1 can be carried out in O(logn) time.
(see L9] and [213). Using n-1 PEs, the boundary points can
be found in 0(l) time. PE(i) simtply checks to see if
d(i)<d(i+l), l<i<n-l. If so, then i is a boundary point. 0
and n are also boundary points. The boundary points have
now to be moved into memory positions r(0),r(l),....r(k).
Tnis can be done in O(logn) time using n PEs and the data
concentration algorithm of [20]. Another data concentration
step moves d(r(O)), d(r(l)), ..... d(r(k)) into D(O), D(l),

D(k). Using K+I PEs, D(i)-r(i), O<i<k can be computed
in 0(1) time. mintD(i)-r(i)} can be obtained in O(logk)
time using the binary tree computation model of [6] (Figure
4.3 shows this for our example.) As explained in E6], only
J(k/logK) PEs are needed for this; but using k/2 PEs is



job i 2 31 4 5 6 7 1 9 10 11 12 13 14 '5

d. _3 _2 _ 5 2_- 9 _3 i__1 9 71ii77 3 _ _ 8 9 3 9 2____

(a) input set of jobs.

0 1 2 3 4 5 6 7 8 9 .0 II .2 13 14 15

job 0 2 1 4 15 1 6 1 o 13 3 ll 5 8 i12 19 7 i9

d 0 2 2 2  3 3 3 3 5 8 9 9 ' 9 ll Ill

(b) jobs sorted in nondecreasing order of due time

Figure 4.2

'aster). F(k) can now be computed using an additional 0(i
time. The overall complexity is therefore O(logn) and n
0-s are used. 2 The EPU of tne above algorithm is
.((nlogn/(logn*n )) = 0(i/n).

-44

D(0:6) 0 2 3 5 8 9 1i

Figure 4.3

4 e nave seen how to deternine te maxinum numoer of
non:ardy jobs. In some applications (see tne ex- section),



I
this is adequate. To obtain the ac-cal schedule, we may
proceed as follows. First, modify procedure FEAS by adding
the line:

8.1 :else: DONE(i) 4- j

and by deleting line 7.

It is easy to see that job i is completed at time
DONE(i) iff DONE(i)<b and DONE(i-l) A DONE(i), l<i<n. For
the modified algorithm, we see that:

DONE(J) = J

(4.3) DONE(i) = min[DJNE(i-l)+l,di1, l<i<n

Solving (4.3), we obtain: -

(4.4) DONE(i) = min {d.+i-j}, l<i<n
Oj i  3

2
DJNE(i), I<i<n may be computed in D(logn) time using n

PEs (tnough n 71ogn are sufficient) and tne binary computa-
tion tree model (see [6] and Figure 4.3). 2Since the initial
sort takes 0(logn) time and requires n PES, the overall
time complexity is O(logn) and the EPU is 0(1/n). From
DOL4E(i), the schedule is easily obtained.

Exam le 4.2: For the sorted data of Example 4.1, we obtain
DONE(0:l5)=(O, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10,
11). So the set of non tardy jobs in [O,b], b>1l is (2, 4,
1, 3, 11, 5, 8, 12, 14, 7, 91. By concentrating these to
the left, we obtain the permutation (2, 4, 1, 3, 11, 5, 3,
12, 14, 7, 9, 15, 6, 10, 13) which represents an optimal
scnedule. E]

5. Job Sequencing With Deadlines

In this problem, we are given a set J of n joos. Associated
with job i is a profit zi and a due time d , l<i<n. Every
joo has a processing requirement of one unit. If job i is
completed by time d., then a profit z. ,z.> is made. If
joo i is not completed by the time d , tAen notning is
earned. 4e wisn Lo select a feasible subset of J that
yields maximum return (recall thac R is a feasible subset
iff all jobs in R can be scheduled to complete on time).

One way to find a feasible subset R of J that gives
maximum return is:

A



- 12 -

Step 1: sort J into nonincreasing order of z.
Step 2: " 4- [ 1 1

for i <- 2 to n do
"If R U[i} is feasible tnen R4--RU(i}

end for

Figure 5.1

A correctness proof of the above procedure may be found
in [14]. It is also possible to implement the above scheme
by a sequential algorithm of complexity O(nlogn). For the
parallel version, we reduce the job sequencing with dead-
lines problem into 2n independent feasibility problems.
First, we note that if RI and R2 are feasible subsets of J
and if Rl is one with maximum return, then 1R21<IRII.

Theorem 5.1: Let A be a feasible subset of J that yields
maximum return. Let B be any feasible subset of J.IBI<Il.

Proof: Since A and B are feasible subsets, they can respec-
tively be scheduled in [O,IAI] and F-, IBI] in such a manner
that no job is tardy. Consider such a scheduling SA of A
and SB of B. Consider a job i that is in both A and B. If i
is scheduled earlier in SA than in SB, we may change SA by
moving i to the slot it is scheduled in B. This would
require moving the job (if any) scheduled in this slot in SA
to the position previously occupied by i (see Figure
5.2(a)). A similar transformation may be made if i is
scheduled later in SA than in SB (see Figure 5.2(b)).

By performing the above transformation on all jobs in A
n B, we obtain schedules SA' and SB' that contain no tardy
jobs. In addition, jobs in A n B are scheduled in the same
slots in SA' and SB'.

If IBI > JAI, then there must be job j scheduled in SB'
in a slot that is empty in SA'. Also, j A A. By adding j
to A, we clearly obtain a feasible set with return larger
than that obtained from A. This contradicts the assumption
on A. So, IBI<IAI. C]

From the sequential algorithm for the job sequencing
problem and Theorem 5.1, we may derive a parallel algorithm.
Let TI(i) = fjIlz. z. or (z. = z. and j < i)} and T2(i) =
rl(i) U (i). 3Consider a scheAule for Tl(i) that has the
fewest number of tardy jobs. Let x(i) be the number of non-
tardy jobs in this schedule. Let y(i) be the corresponding
number for T2(i). From our discussions, it follows that job
i will be included in R (Figure 5.1) iff y(i) > x(i).
Hence, R may be obtained by computing x(i) and y(i), l<i<n.
x(i) and y(i) may be computed using the parallel algorithm
for F(k) described in Section 4. From R, the optimal



- 13 -

SA __ _ SA

SB SB

(a) (b)

Figure 5.2: Lining up common joos.

schedule is obtained by scheduling the joos in R first, in
order of due times; and then scheduling the remaining joDS
in any order. This construction can be carried out by first
concentrating tne jobs in R and then sorting them by due
times.

Example 3.1: Figure 5.3(a) shows an example job sac with 12
jobs. These have been ordered by due times in Figure
5.3(b). Figure 3.4 gives T2(i), l<i<n. The number of non-
zardy jobs in the optimal schedules for Tl(i) and T2(i) is
respectively given in (x(i),y(i)). It also tells if job i
is to be included in R. R is seen to be [1, 3, 5, 6, a, 9,
11, 121. These jobs may be concentrated to one end to
obtain Figure 3.5. This gives tne optimal scnedule. C]

i 1 2 3 4 5 6 7 8 9 10 11 i 12

d 2 6 6 2 6 - 6 6 7 3 7 8i

R9_,5 55 i 65 SO70 35 60 S0! 7560 85 60

(a)

SI 4 6 10 2 3 5 7 8 9 11 12

2 2 2 3 6:6 6 6 '67 78.

zi 85 30 35 60 55 65 70 60 80 75 85 60

(b)

Figure 5.3



- 14 -

r2(L) i I
Z1=85 di 2

include (3,1)

r2(2) i 1 4 6 10 2 3 5 7 8 9 11 12
z2=55 di 2 2 2 3 6 6 6 6 6 7 7 8

reject (8,8)

r2(3) i 1 4 6 3 5 8 9 11
z3=65 d. 2 2 2 6 6 6 7 7

1 include (5,7)

r2(4) i 1 4 6 11
z4=80 di 2 2 2 7

reject (3,3)

T2(5) i 1 4 6 5 8 9 11
z5=70 d i 2 2 2 6 6 7 7

include (5,6)

T2(6) i 1 6
z6=85 d. 2 2

include (1,2)

T2(7) i 1 4 6 3 5 7 8 9 11
z7Go d i 2 2 2 6 6 6 6 7 77 reject (7,7)

r2(8) i 1 4 6 8 11
z8 =80 di 2 2 2 6 7

include (3,4)

T2(9) i 1 4 6 8 9 11
z9=75 d. 2 2 2 6 7 7

include (4,5)

T2(10) i 1 4 6 10 3 5 7 8 9 11
z13=60 d i 2 2 2 3 6 6 6 6 7 7

reject (7,7)

T2(11) i 1 6 11
zli=85 di 2 2 7

include (2,3)

r2(12) i 1 4 6 10 3 5 7 8 9 11 12
z12=60 d i 2 2 2 3 6 6 6 6 77 8include (7,8)

Figure 5.4

Complexity Analysis



- 15, -

feasible jobs late jobs

i 5 185 65 70 80 75 85160 30 1 60 55 601

Figure 5.5 rhe optimal schedule

As far as the complexity is concerned, the initial sort by
due times can be done in O(logn) time using n ?Es. Next,
de need to replicace this sorted data into n copies, one to
be used for eacn 1l(i) and T2(i). This replication can oe
carried out using n PEs and spending O(logn) time (the
Ologn) time is needed to avoid read conflicts). Now, tne
n Ps *are divided into n groups of n PEs each. Group i
computes Tl(i) and then T2(i). Tl(i) is obtained by having
the jth PE in group i flag job j iff z. > z. or (z. = z. and
j<i). Next, the flagged jobs are c5 ncenrra:ed In 0(±ogn)
time using tne n PEs in each group. Note tnat tnis concen-
tration preserves the due time ordering. The n PEs in group
i next compute x(i) = F(K i), l<i<n. his takes 0(logn)
time. y(i), l<i<n is computed in a manner similar to thatused to obtain xTiT.

Having ootained x(i) and y(i), n PEs are used to deter-
mine if y(i) > x(i), l<i<n. The selected jobs can be con-
centrated in O(logn) time using these n PEs. The concentra-
tion preserves the due time ordering of the seledted jobs.

The overall complexity o our parallel algorithm is
therefore 0(logn). It uses n PEs and has an EPU of 0(1/n).
This should be contrasted with the algoritnm presented by us
in [6] for he same problem. That algorithm has a complex-
ity of O(log n) but uses only 0(n) PEs. Thus, its EPU is
0(l/logn).

6. Earliness and Tardiness Penalties

et 3 oe a se: of n jobs. Associated witn each job is a tar-
get start time a,, a target due time b., and a processing
time pi. Any one machine scnedule S for may be denoted by
a vector (S . .. ,s_) where si is the start time of job i.
Schedule S is admissacle iff si > si-l , pi-1' 2<i<n. The

computation time c. of job i is s4 - 0 i he earliness e
and tardiness t, of to i are given'by:

e. = maxt ,a.-s.}1.
t.i = mxa i-oa



.16-

If job i is early (i.e., ei  > 0) then it incurs a

penalty g(ei if it is tardy (i.e., te>.), then it incurs a
penalty h(t) The objective is to fiAd a schedule S that
minimizes ihe maximum penalty. This pr2 blem was first stu-
died by Sydney [23]. He ootained an O(n ) algorithm for the
case wnien:

(1) aija j implies bib j
and

(2) G( ) and h( ) are monotone nondecreasing continuous
functions such that g(Z) = h(0) = 0.

Our notations and2definitions are taken from Sidney's
paper. Sidney's O(n ) algorithm was subsequently improved
to O(nlogn) by Lakshminarayan et al. The parallel algorithm
we shall develop here is based on the algorithm of Lakasn-
minarayan et. al [163.

The algorithm of [16] first finds an admissable
schedule S using procedure ADMIS (Figure 6.1). This pro-
cedure assumes that the jobs are ordered by target qtart
times (i.e., a.<'a.) and within start times by target duel- 1+1 ..
times (i.e.,ai =ai+ 1 mplies bi.bi+l). The maximum lateness,

A, in S is next computed. If L=O, then Skis clearly optimal
(as maxte. =maxit1=0). If L > 0, then E is computed using
one or tAeir Jemmias. Finally, all the start times in S are
decreased by E . The new schedule is optimal.

Procedure ADMIS (a,p,s,n)
//jobs are ordered by target start and due times)//
declare n, a i:n,pl:n, S: n

s4-- a2 nlnln
fr- to n do

s. 4- max[a.and f~r a'ilP-

end ADMIS

Figure 6.1

can be computed in O(loqn) time using n PEs (see
[6)). As described~in [16), E may be computed in O(1) time
using 1 PE. Once E has been obtained, n copies of it can
oe made in O(logn) time using n PEs. Finally, the s s can
be updated in O(1) time using n PEs. Also, the initial ord-
ering of the jobs may be carried out in O(logn) time with n
PEs. All that remains, is the computation of the admissable
schedule. From Figure 6.1, we see that

(6.1) S m [a ilsi_ + pi 11, 2<i n



- 17 -

Expanding the recurrence (6.1), we obtain

i-I
(6.2) si = max [a.+ 1 pk 1,l<i<nl<j<i k- -

It should be easy to see that using (6.2) and O(n 3

PEs, one can compute all the s.s in O(logn) time. We shall
devote the remainder of the secion to the development of an
O(logn) algorithm that utilizes only n/2 PEs. As we shall
see later, Fn/lognl are all that is needed.

For convenience, we shall assume that the jobs are
* ; indexed @,i,....n-1 rather than 1,2,...,n. Before describ-

ing the algorithm, wi develop some terminology. Let S(O:n-
1) oe an array. A 2 -block of S consists of all elements of
S whos? indices differ only in the least significant k bits.
The 2 -blocks of A(1:10) are [0,1], [2,3], [4,5], [6,7],
[8,9], and [I0]; the 2 -blocks are [0,1,2,3], [4,5,6,7], and
[8,9,10]; ek£l Two 2 -blocks are sibling blocks iff their
union is a 2 -block. Thus, [3,1] and L2 ,3] are sibling
blocks; so also are [0,1,2,3] and [4,5,6,7]. However, [2,3]
and [4,5] are not sibling blocks.

Let A(O:n-l) and P(Z:n-l) be the target start times and
the processing times. Lit Ci, i+l, i+2, ... ,r] be the index
set for any J -block (a 2"-block has 2 indices ujless it is
the last 2 -block). With respect to this 2 -block, we
define

j-1
S(j) = E P(q), j is an index in this block

q=i
r

(6.3) T(j) = I P(q), r is the highest index in the block
q=i

j-i
Q(j) = max [A(q)+ S P(t)} ,j is a block index

i.qcj t=q

J(j) = Q(r) + P(r), j is a block index

For a 2 -block [i], we have:

(6.4) S(i) = J; T(i) = P(i); Q(i)=A(i); U(i)=A(i)

Let XC= [i,i+i,...,u] and Y = [u+l,...,v] be two
sk~fing 2 -blocks. Their union Z = [i,i+l,...,v] is a
2 -block. Let S, T, Q, aid U be the vilues defined in
(3.3) airh respect to the 2'-blocks. Let S', T' Q', and U'
oe the values defined with respect to the 2 -blocK Z.
From (6.3), we see that:

I S(j) if j 4 X

(6.5a) S'(J)= i S(j)+T(i) if j 4 Y



- 13 -

I T(j)+T(u+l) if j 4 X
(8.Sb) T'(j)=l

T(j)+T(i) if j 4 Y

I (j). if j 4 X
(6.5C) max[Q(j), U(i)+S(j)l if j ' Y

(6.5d) U'(j)- Q'(v)+P(v)

Jne also notes that with respect to the entire

log2 nl
2 -block 0,1, ... ,n-,

Q(j) max [a + p(t)}
.q!Jjq t=q

SS of (6.2)

Our strategy is to compute the admissable schedule
obtained Dy procedure ADMIS by using (6.5 a-d). We start
with the S, T, Q, and U values for 2 -blocks as given by
(t.4). Next using (6.5 a-d), the2 S, T, Q and U values f~r
2 -blocks are obtained; then for 2 -blocks, then for 2 -
blocks: etc. Until we have obtained the Q values for tne

Flog2 nl
entire 2 -block.

Example 6.1: Figure 6.2 gives a set of 10 jobs (indexed 0
tnrough 9). The first low of Figure 6.3 gives the S, T, Q,
and U values for the 2 -blocKs; etc. The numbers witn
arrows give PE assignments. From the bottommost row, we
obtain s=(4,3,5,8,12,13,16,20,21,24) as the admissaole
schedule. C1

1! 0 1 1 2 )3 4 ' 5 i6 ' 7 ' 8 9

P 3 12 I2 14 1 3 4 1 3 4

A0 1L4 I8.9 915 15116 17

Figure 6.2 An Example of data set

Let us now proceed to the formal algorithm. In the
actual algorithm, processors are assigned to compute the new
values of S, T, Q, and U. Assume that the PEs are indexed
0,,., -1n/2_-1. Witfh respect to our example of Figure
6.3, when k-0, PE(a) will compute the new values of 3(l),
T(J), T(1), 0(1), U(Z), and U(1); PE(W) will compute S(3),
T(2), T(3), Q(3), U(2), and U(3); etc. When k-1, P~s 0 and 1



- 19 -

0 1 2 3 4 5 6 7 8 9

O 1 I I

-- -- f- V,0 0 7 4i 0 '01

20-blocks T 3' 3 5 5 1 ! ! - 3 i

81 9i 19! 1 15 1 5i 1 6j 1

U / L42 'd H 0 2 2 2

. l L J L

_I

S 0 3 5 7 FO 1 4 ' 0 3
2-blocks T Ill 1! 11 ni 9 9 97 i

Q 0 3 5 8 9 116 71

U 5 2 12 20 20 2q 123 231
A 0 2

07 12 15 19 1 3
2-blocks T 20 20 20 20 20 20 20 20 17 7i

Q 0 3 5 8 12 1 13 16 2 16 19
U 21 21 2- 21 21 0 2 2 0 223 2

S 0 3 5 7 11 12 15 19 20 23

23-blocks T 27 27 27 27 27 27 27 27 27 27

Q 0 3 5 8 12 13 16 20 21 24

U 28 28 23 28 23 28 28 28 23 2S

Figure 6.3 Computing tae admissible scnedule

are botn assigned to the new 2 -olock tr ,1,2,3], being con-
structed. PZa 2 and 3 are assigned to the block 4,5,6,7j.
PEs 4 and 5 are idle.



Let ...i3 ,i2 ,i1 i be the binary representation of i.

The PE assignment rule is obtained by dkfining the functionf(i,j)= ... ij+l' ij@ 3 j-1... i 0, When 2 -blocks are being

combined, PE(i) com~utas S(f(i,k)+2k ), T(f(i,k),
T(f(i,k)+2'), 0(f(i,k)+ 2 ), U(f(i,k)), and U(f(i,k)+ 2 )(provided of course that all these indices are less than n).

The formal algoritnhm is given in Figure 6.4. This algorithm
mirrors equations (6.5 a-d). Some minor modifications have
however .een made. Since T( ) is the same for all indices in
a 2K-bloc , S(j)+r(i) of (6.5a) has been replaced by
S(j)+T(j-2k. Similarly, T(j)+T(u+l) Pas been replaced by
T(j)+T(j+2 and U(i)+S(j-1) by U(j-2 )+S(j). Note that as
a result of tnis change, new T and U values for tne rignt
most block may be incorrect (as j+2 may exceed n-1). This
does not affect the outcome of the algorithm as the T and U
values of rintmost blockt are never used. One may verify
that max[U(j+2 ),U(j)+T(j+2 )=Q'(v)+P(v) (Eq. 6.5d). When
k=Llognj -I, only Q need be computed.

procedure PADMIS(A,P,s,n)
//obtain the admissable schedule(s1 s2 •
declare n, A(0:n-l),P(0:n-l),S(U:ni),T(S n-)
delcare Q(0:n-1),U(0:n-l),j,i
for each PE(i) do in parallel

i 4- f(i,0)
/initialize 2 -blocks//S(j) 4--0; T(j) -- P(j);Q(j) 4--A(j);U(j) <--A(j)+P(j)

S(j+l) 4-3; T(j+l) 4--P(j+I)
Q(j+l) 4--A(j+);U(j+1) 4--A(j+)+P(j+l)
for k4--0 to Llogin| -l do
77combine- 2-bloc s7/
j4--f(,k) //PE assignment//
if j+2 <nkthen k k

W~j+2. Ti--,ax[Q(j+2 ), U(j)+S(j+2 k)]

U(j+24) 4--.naxU(j+2 ), U(j)+T(j+2 )1

2(j )+2 ')S(j+2 -S(j+2 )+-r(4)
T(j+2 )-T( )+T(j+2)

T(j) 4.-T(j+2
endif

end for
end for
si ;-Qi), O!in

end PADMIS

Figure 6.4: Parallel admissable schedule algorithm.

The complexity of PADMIS is readily seen to be O(logn).
It uses n/2 PEs. By dividing the jobs into f-n/lognl
groups, each of size at most logn, it is possible to compute



21

the s s in O(logn) time. This requires combining tne sequen-
tial and parallel algorithms togecher. We omit tne details.
However, this grouping technique has been used in otner
problems. The details can be found in [63. Witn this
grouping tecnnique, the parallel admissable scnedule algo-
rithm will have an EPU of 0(l).

The overall complexity of the parallel algorithm to
minimize earliness and tardiness penalties is determined by
t e sort (to order jobs). This takes O(logn) time and uses
n PEs. The EPU is 0(1/n).

7. Cnannel Assignment

The channel assignment problem occurs naturally as a dire
routing problem. Components of an electrical circuit are
laied out in a straight line as in Figure 7.1. Certain
pairs of components are to be connected using only two vert-
ical runs and one horizontal run of wire (as in Figure 7.1).
The horizontal and vertical runs are physically located in
different layers. Each horizontal run of wire lies in a
-cnannel' . No channel can simultaneously carry more than

one wire. We are required to assign the norizontal wire
runs to channels, using the least number of cnannels. The
assignment of Figure 7.1 uses 3 channels.

channel 3

channel 2 I I

channel I ',

components 1 2 3 4 5 6 7 a

Figure 7.1: 4iring witn 3 channels.

In the mathematical formulation of this problem, we are
given n pairs of points (a.,b.), l<i<n. Eacn pair (ai,b i)
is to be joined by a continuous horizontal run of ;re.
These wires are to be assigned to channels, in such a -way
that the number of channels used is minimum. In the exampleof Figure 7.1, n=4: the pairs of points are (1,4), (2,5),

(3,7), and (6,8); the channel assignment is: (1,4) and (6,8)
in channel 1, (2,5) in channel 2, and (3,7) in channel 3.

The joo sequencing problem with release times and due
times '3] is similar to the channel assignment problem.

Suppose de are given a set J of n jobs. Associated 4ith
eacn joo is a release time r., a due time d., and a process-
ing time pi" A feasible schedule is one in which no job is



- 22 -

processed before its release time; all jobs complete by

their respective due times; and jobs are processed without
interruption from start to finish. We are required to find a
feasible schedule that uses the fewest number of machines.

One readily sees that when r.+p.=d., l<i<n, this problem is•2. 1 1 -- -
identical to the channel assignment problem. When this res-
triction on ri , Pi. and di is removed, the problem is NP-

nard.

The fastest sequential algorithm known for the channel
asrignment problem is due to Gupta, Lee, and Leung [9J.
rhis algorithm runs in O(nlogn) time and consists of the
following steps:

step 1: Sort the multiset (ai ll<i<nU(b.ll<i<nl
-- of the 2n end points into nondecieasing order.

step 2: m4--J; stack <- empty
step 3: process the 2n points one by one

if the point being processed is an a.
then if stack empty then m4--m+l

assign this wire run to channel m
else unstack a channel from

the stack and assign the wire to this
channel

endif
else put the channel used by this wire onto the

stack
endif

In the above three step algorithm of [9], the final
value of m is the fewest number of channels needed. The
assignment is constructed while this number is being deter-
mined. It is possible to determine this number without
actually obtaining a channel assignment. Let c1 , c2 .
c .nbe the sorted sequence of 2n end points. Set z 1=l if c
i an a and zi=-I if c. is a bi . It is easy to see tnat

r.= z. gives the number of wires that either start at c.ji= 1  1.
or cr ss the point ci. Further, max (rj is the number of

lj(2n
channels needed to route the n wire segments.

r., l<i'n can be computed using the partial sums algo-
rithm jof -6]. This algorithm takes O(logn) time and uses
r n/lognl PEs. The largest r. can be found in 3(logn)
time using Fn/lognl PEs. ihe initial 2rdering of tne as
and bs can be done in 0(logn) time using n PEs. If this
sorting algorithm is used, the resulting parallel algorithm
to deter-ine tne fewest number of channels haq a time 2 com-
plexity of O(logn) and an EPU of O(/n). If the O(log n), n
PE sorting algorithm of £21] is used instead, the time com-
plexity is 0(log n) and the EPU is 0(l/logn).



- 23 -

Example 7.1: Figure 7.2 gives a set of n wires. Figure 7.3
shows tne rasults of tne different steps of tne pacallel
algorithm to determine the fewest number of channels needed.
This numner is 4. E3

as o

a 7 1 b 7

a 5  - 5 a5  lb6

aLIb
a3 3a2l b

all I bl

Figure 7.2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 0 Cll C12 C13 14 C15 C,6

Sort a a2 a b, a, a b b a6 b a a8 b a b b1 2 34 3 .3 3 6 1 a..7 8 .4

Assigned Values I 1 1 -1 1 1 -1 -1 1 -1 1 i -1 -1 -l -i

Partial Sum 1 2 3 2 3 4 3 2 3 2 3 4 3 2 1 0

MAX 4

Figure 7.3

,ane actual channel assignment can be obtained from :ne2
f s (recall tnat r.= z I), l<j<2n. Assume that z.

corresponds to a,. Let q be the largest index such that
q<j, r,,M - 1, and c corresponds to an a (say a ). If no
sucn q _xi ts, set q t 3. An examination of the Palgoritnmi of Gupta at al. reveals that if q=0, then the channel used
by (a.,1b ) has not been used earlier. If q #0, then it was
most ze~ently used ia zhe interval (a ,b ), To see the
truth of tnis, note that at point b, the assigned
to (a , ) is out into the stack.- This cnannel remains in
tne stacA until we reach the nearest point at 4hich tne



A

- 24 -

number of wires that start or cross is one more than the
number at b (if a.=a. and i<j,then we say that a. is before
a.). For Pevery sach that c. is an a point, let L(k) = p
a4 defined above. 3

L(j) partitions the set of n wires into sets. Figure
7.4 gives the paritioning for the example of Figure 5.3.
Each wire is represented by a circle. The circle with index
i inside it represents the wire (a., b.). L(j) may be
interpreted as a left link. Figure 7.4 shows the paritions
as linked lists with L( ) being shown as a leftward arrow.
We leave it to the reader to see 2how the L( ) values may be
obtained in O(logn) time using n /logn ?Es.

Figure 7.4: Paritions for Example 7.3

The channel assignment Q(k) for a wire k with L(k) = 3 is
obtained from the r value corresponding to

If L(k) # 0, we may initially set Q(k)=O. The actual
channel assignments for wires with L(k) # 0, may be obtained
oy simultaneously collapsing the linked liscs and cransmit-
ting the channel assignment within the lists as below:

for j 4-l to -lognl do
for eacn- for which-Q(i)=0 do in parallel

if L(L(i))=J then Q(i) -- Q(L(i))7-,i) -- LC(L i))

end for
end for

The parallel complexity of the above scheme is Q(logn).
Therefore, the overall complexity of our parallel channel
assignment algorithm is O(logn) (i.e., using the J(logn) n
PE sorting algoritnm); its EPU is 0(1/n).



- 25 -

S. Conclusions

The extent to wnicn parallel co.nputers will find application
will depend largely on our aoility to find efficient algo-
richms for titem. In this paper we have examined several
scheduling problems. The single processor algorithm for
eacn of tnese appeared to be highly sequential in nature. A
closer look revealed a parallel structure tnat led to effi-
cient parallel algorithms. Several other scneduling prob-
lems can be solved efficiently using the tecnniques of tnis
paper and of [22].

Some examples are:

(a) 2 machine flow shop scheduling to minimize finisa
time.

(o) 2 machine open shop scheduling to minimize finish
time

(c) 2 machine flow shop scheduling, witn no wait in
process, to minimize finish time

The parallel algorithms for the above problems involve
a rather straightforward application of parallel sorting and
partial sums. For example, consider problem (a). Here, we
simply divide the job set into two classes: (i) jobs which
need less time on machine 1 than on 2 (ii) remaining jobs.
Jobs in (i) are sorted into nondecreasing order of their
machine I processing times. Jobs in (ii) are sorted into
nondecreasing order of their machine 2 processing time. Tne
optimal processing permutation consists of jobs in (i) in
sorted order followed by those in (ii) in sorted order. ine
readily sees that this permutation satisfies JacKson's rule
C15].



-26-

References

i. Agerwala, T. and Lint, B., "Communication in Parallel
Algorithms for Boolean Matrix Multiplication," Proc.
1978 Int. Conf. on Parallel Processing, IEEE pp. 146-
153, 1978.

2. Arjomandi, E., "A study of parallelism in grapn
theory," Ph.D. thesis, Computer Science department,
University of Toronto, December 1975.

3. Batcher, K. E., "MPP - a massively parallel processor,"
proc. 1979 Int. Conf. on Parallel Processing, IEEE, p
249, 1979.

4. Csanky, L., "Fast parallel matrix inversion algo-
rithms," Proc. 6th IEEE Symp on Found. of Computer Sci-
ence, October 1975, pp. 11-12.

5. Dekel, E., Nassimi, D., and Sahni S., "Parallel matrix
and graph algorithms," Department of Computer Science,
University of Minnesota, TR 79-10, 1979, to appear in
SIiA Computing.

6. Dekel, E. and Sahni, S.,"Binary Trees and papallel
scheduling algorithms," Department of Computer Science,
University of Minnesota, TR 80-19, 1980.

7. Eckstein, D., "Parallel graph processing using depth-
first search and breadth first searcn," Ph.D. Thesis,
University of Iowa, 1977.

a. Gertsbakh, I. and Stern, H. I., "Minimal resources for
fixed and variable job schedules," Operations Research,
vol. 26, No. 1, 1978, pp. 61-85.

9. Gupta, U. I., Lee, D. T., and Leung, J. Y-T., "An
optimal solution for the channel-assignment problem,"
IEEE Trans. on Computers Vol. C-28, No. 11, 1979, pp.
807-810.

10. Higrschberg, D. S., Chandra, A. K. and Sarwate, D. V.,
"Computing connected components on parallel computers,"
CACM 22, 8(1979), pp. 461-469.

11. Hirschberg, D. S., "Fast parallel sorting algorithms,"
CACM, Vol. 21, No. 8, August 1978, pp. 657-661.

12. Horn, W. A., "Some simple scheduling algorithms," Naval
Res. Logist. Quart., Vol. 21, pp. 177-185, 1974.

13. Horowitz, E., Sahni, S., "Exact and approximate algo-
rithms for scheduling nonidentical processors," JACM,
23, 1976, pp. 317-327.

14. Horowitz, E. and Sahni, S., "Fundamentals of computer
algorithms," Computer Science Press, Potomac, MD, 1978.

13. Jackson, J. K., "Scheduling a production line to minim-
ize tardiness," Research report 43, Management Science
Research Project, Univeristy of California, Los
Angeles, 1955.

16. Lakshminarayan, S., Lakshmanan, R., Padineav, R. and
Rochette, R., "Optimal single machine scheduling with
earliness and tardiness penalties," Operations Research
vol. 26, No. 6, 1978, pp. I079-1082.

17. McNaughton, R., "Scheduling with deadlines and loss



- 27 -

functions," Management Sci. 6, 1959, pp. 1-12.
18. Moore, J. M., "An n joo, one machine sequencing algo-

ritnm for minimizing the number of late jobs," Manage-
ment Sci. 15, PP. 102-109, 1968.

19. Muller, D. E., and Preparata, F. P., "Bounds to com-
plexities of networks for sorting and for switching,"
JACM, Vol. 22, No. 2, April 1975, pp. 195-201.

20. -assimi, D. and Sahni, S., "Data broadcasting in SIAD
computers," £EEE Trans. on Computers ,c-30, No. 2, Feb
1981, PP 101-107.

21. Preparata, F. P., ",ew parallel-sorting schemes," IEEE
Trans. on Computers, C-27, No. 7, July 1978, pp. 669-
673.

22. Savage, C., "Parallel algoritnms for graph theoretic
problems," Ph.D. Thesis, University of Illinois,
Urbana, August 1978.

23. Sidney, J. B., "Optimal single-machine scheduling with
earliness and tardiness penalties," Operations Research
Vol. 25, pp. 62-69, 1977.



I
UNCLASSIFIED

;ECUP.ITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Parallel Scheduling Algorithms Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) s. CONTRACT OR GRANT NUMBER(a)

Eliezer Dekel and Sartaj Sahni N00014-80-C-0650

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMSRS

Computer Science Department

University of Minnesota
136 Lind Hall. 207 Church St. SE, Mpls.. MN.

II. CONTROLLING OFFICE NAME AND ADDRESS IQ. REPORT DATE

Department of the Navy March 1981
Office of Naval Research 13. NUMBER OF PAGES

Arlington, Virginia 22217 27
14. MONITORING AGENCY NA-aE & AODRESS(If dliferent from ControllIng Office) IS. SECURITY CLASS. (.1 thle report)

UNCLASSIFIED

ISo. DECL ASSI FICAT ON/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

Approved for puhilc rlease;
Distribution Unimited

I?. DISTRIBUTION STATEMENT (of the abotrect entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverie eie ift eceeary and Identify by block number)

Parallel algorithms, complexity, shared memory model, mean finish time,
earliness, tardiness, deadline.

20. ABSTRACT (Continue an rere" ade If necessary and Identify by block numbet)

We obtain fast parallel algorithms for several scheduling problems. Some of
the problems considered are: scheduling to minimize the number of tardy jobs;
job sequencing with deadlines; scheduling to minimize earliness and tardiness
penalties; channel assignment; and minimizing the mean finish time. The shared
memory model of parallel computers is used.

DD 1473 EDITION of I NOV ,5 is O.OLEUcs
S/N 0102LF-014-660, Unclassified

.. . . . . _ 3 4 , , , lallilll .. . .. illlllil .. .... ... . 's " W -- • "


